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Abstract - A time domain boundary element method, which allows the analysis of dynamic crack
problems by using a single-region formulation. is presented. The present method generates the
distinct set of boundary integral equations by applying the displacement equation to one of the
crack surfaces and the traction equation to the other. The boundary of the structure is divided into
continuous. semi-discontinuous and discontinuous quadratic elements. The temporal variation of
boundary displacements and tractions is approximated by piecewise linear and constant functions,
respectively. The dynamic stress intensity factors are calculated using the crack opening dis-
placements and the path independent J-integral. This method is used to study dynamic behaviour
of stationary cracks in finite and infinite domains in two-dimensional analysis. The results for two
examples arc compared with other reported solutions, showing good agreement.

1. INTRODUCTION

The aim of dynamic fracture mechanics [see e.g. Sih (1977) ; Freund (1990)] is to analyse
the growth, arrest and branching of moving cracks in structures subjected to dynamic loads.
The stress field in the vicinity of the crack is usually characterized by dynamic stress intensity
factors (DSIFs) which, for transient problems, are functions of time. Structures with
arbitrary shape and time-dependent boundary conditions need to be analysed by numerical
methods. The boundary element method (BEM) has been successfully applied to stationary
and growing cracks in infinite and finite domains. Solutions in dynamics using the BEM
are usually obtained [see e.g. Manolis and Beskos (1988) ; Dominguez (1993)] by either the
time domain method. Laplace or Fourier transforms or the dual reciprocity method.

The application of the time domain method in fracture mechanics has been reported
in many papers.

Nishimura e7 «/. (1987, 1988) used the double layer potentials. The boundary integral
equations in this formulation contain hypersingular integrals. The equations were reg-
ularized by using integration by parts twice. The spatially constant and temporally linear
shape functions were used for approximation. The crack opening displacements (CODs)
were fitted with an interpolation function, which was then used to calculate the DSIF. The
method was applied for stationary and growing straight cracks in 2D, and plane cracks in
3D infinite domains. Zhang and Achenbach (1989) used a different regularization procedure
from Nishimura er a/. (1987, 1988). They used constant elements away from the crack front
and spatial square-root functions near the crack tip. A linear time-variation was used. The
method was applied for collinear cracks in the infinite domain. Zhang and Gross (1993)
used the two-state conservation integral of elastodynamics. which leads to non-hyper-
singular traction boundary integral equations. The unknown quantities in this approach
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are the crack opening displacements and their derivatives. Similar time and space dis-
cretization was used. The method was applied to penny-shaped and square cracks in the
infinite domains. Hirose (1989) and Hirose and Achenbach (1988, 1989, 1991) used the
formulation based on the traction equation. Piecewise linear temporal functions were used
and the COD was interpolated using the analytical solution of the static problem. The
method was applied for both stationary and growing penny-shaped cracks.

Nicholson and Mettu (1988) and Mettu and Nicholson (1988) used two types of
approximation: (i) constant elements for spatial and temporal interpolation of boundary
quantities ; and (ii) quadratic in space and linear in time. The DSIFs were determined using
the COD. The method was applied to solve several opening-mode crack problems, namely
an infinite plate containing either a semi-infinite or a finite crack subjected to crack face
loading and a centre-cracked finite plate subjected to a sudden remote tensile stress. Dom-
inquez and Gallego (1992) used a mixed variation of boundary values in which tractions
were assumed to be constant and displacements linear in time. The boundaries were divided
into quadratic elements. At the crack tips ordinary and traction-singular quarter-point
elements (QPEs) were used. The DSIFs were determined using the COD and tractions of
the traction-singular elements. The method was applied to finite bodies with cracks. Mixed-
mode crack problems were analysed using the subregion technique. Gallego and Dominguez
(1992) modelled the crack growth by using moving singular elements and a remeshing
technique. The method was applied for problems for which the motion of the crack tip was
fully specified: a semi-infinite crack that grew at the constant speed in an unbounded
domain and a finite length crack in a finite plane body. Mettu and Kim (1991) used the
superposition of two stationary crack problems. The constant approximation in time and
space was used. The DSIFs were calculated using the COD and a least-squares mini-
mization. The method was applied to the problem of growth of a semi-infinite crack in the
infinite domain subjected to crack-face loading.

The solution of a general crack problem cannot be achieved in a single-region analysis
by the direct application of the BEM, because the coincidence of crack nodes gives rise to a
singular system of algebraic equations. The boundary integral equations for two coincident
points on both surfaces of the crack are identical, because they have the same coordinates,
and integrals are calculated along the same boundary. Recently, Portela et al. (1992, 1993)
applied the so-called dual boundary element method (DBEM) to stationary and growing
cracks in two-dimensional analysis. A non-singular system of equations was obtained by
using two different boundary integral equations for coincident points, i.e. the displacement
and traction equation. The unknown absolute values of displacements and tractions along
the crack surfaces and others boundaries of the body are obtained directly by the solution
of the system of equations. This method was extended later by Mi and Aliabadi (1992,
1994) to stationary and growing cracks in three-dimensional analysis. Fedelinski et al.
(1993, 1994a) presented an application of the DBEM combined with the dual reciprocity
method for stationary cracks in structures subjected to dynamic loading.

In this paper the DBEM and the time domain method are presented. Preliminary
results of this approach were presented in Fedelinski er al. (1994b, 1994c¢). The displacement
and the traction boundary integral equations are formulated. The discretized form of the
equations is obtained by dividing the boundary into quadratic elements and using a time-
stepping procedure. The formulae for analytical temporal integration of the fundamental
solutions for linear interpolation of displacements and constant interpolation of tractions
are given. The singularities of the fundamental solutions are discussed and the semi-
analytical method of spatial integration for the traction equation is described. The DSIFs
are calculated using both the crack opening displacements and the path independent J-
integral. To illustrate the possibilities of the method, it is applied to four dynamic crack
problems.

2. DUAL BOUNDARY INTEGRAL EQUATIONS AND TIME DOMAIN FORMULATION

Consider a linear, elastic, homogeneous and isotropic body enclosed by a boundary
. For a body which is not subjected to body forces and which has zero initial displacements
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and velocities, the displacement of a point x” can be represented by the following boundary
integral equation :

c(XDu(x', 1) = [ [ L"_,,(x'.f;.\‘.r)f,(,\'.t)dr(.\’)}dr

Jo LJr

— ,[[ T,,(x’,f:,\‘.r)u/(x,r)dl"(x)]dr, Lj=12, (1)
JoLJE

where Uy (x'.7;x.1). T,(x".1:x. ) are fundamental solutions of elastodynamics for the
displacement equation ; u(x, 7). 7,(x, 7) are displacements and tractions respectively, at the
boundary ; ¢,(x’) is a constant which depends on the position of the collocation point x”;
X is a boundary point: 7 is the time of observation. The summation convention is used for
the repeated subscripts.

The traction equation is obtained by differentiating the displacement equation, apply-
ing Hooke's law and multiplying by the outward normal at the collocation point. For a
point which belongs to the smooth boundary the traction equation is

%t,(x". 1) = n,(x’){f [J L"A,,(x'.1;.\‘.r)tk(.\'.r)dF(,v):ldr
0 I

where n(x’) are components of the outward normal at the collocation point X',
Uw{x',t:x,7) and T,,(x". r:x.1) are fundamental solutions of elastodynamics for the trac-
tion equation.

[[ T (X7 12X, 1)U (X, T) dl"(x)}dr}, Lijk=12, (2)

v

3. NUMERICAL FORMULATION

3.1. Approximation of boundary displacements and tractions

The numerical solution of a general mixed-mode crack problem is obtained after
discretizing both space and time variations. The boundary I' of the body is divided into M
boundary elements with P nodes per element. The observation time ¢ is divided into N time
steps. The temporal variation of boundary quantities is specified by Q values within the time
step. Displacements and tractions are approximated within each element using interpolation
functions N?(¢), and within each time step using interpolation functions M%(t). The bound-
ary integral equations are applied for all the nodes of the boundary elements. After the
approximation, the displacement and the traction equations are
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Fig. 1. Modelling of the boundary.

where L, and L, are respectively the numbers of collocation points for which the dis-
placement and the traction equations are applied ; L, + L, = L, the total number of nodes;
J” is the Jacobian and ¢ is the local coordinate (—1 < & < 1). A distinct set of boundary
integral equations is obtained by applying the displacement equation (3) for collocation
points along the external boundary I', and along one of the crack faces I',, and the traction
equation (4) for the opposite surface of the crack I', (see Fig. 1).

Quadratic elements are used for the discretization of the boundary. The displacements
and tractions are interpolated using: continuous elements for the external boundary I',,
semi-discontinuous elements at junctions with the cracks and straight discontinuous
elements on the crack faces I', and I',. The geometry is approximated by using continuous
elements. The expressions defining the spatial shape functions are given in Table 1, where
& is the local coordinate of the node.

The displacements are approximated within each time step by using linear interpolating
functions and the tractions are piecewise constant. This mixed variation gives [see Dom-
inguez (1993)] a better solution when the structure is subjected to impact loads. The
constant temporal shape function is

M (1) =1 4)

and the linear temporal shape functions are:

ne- 1 n

gy — 8, V() = "
M'(7) A and M*(1) AT (6)

n—1

where "' < 1 < 1", At is the time step (¢" = nAt) and the superscripts 1, 2 denote the
forward and the backward local time node, respectively.

Table 1. Spatial shape functions

Coordinates ¢’ Spatial shape functions

Element ——— e
node 1 node 2 node 3 N! N7 N?
continuous —1 0 1 E-1) (1+9H01-9 LEEHD
semi-discontinuous -2 0 | 2HE-) -9 2EE+D
—1 0 : 1E-3) U+9G-9) LEE+T)

discontinuous —= 0 :,g(é_%) g(%+§)(§_é) zc(5+§)
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3.2. Evaluation of the time integrals
The time integrals in eqns (3) and (4) with the simple temporal shape functions in eqns
(5) and (6) can be calculated analytically. The following simplifying notation is used :

R
L= e 7
@ GATN—n+ 1) )

X = ®)

and

R

V= AN a1y

©)

where ¢, is the velocity of the wave : the subscript x denotes the number of the wave, that
is @ = | corresponds to the longitudinal and x = 2 to the shear wave ; R is the distance from
the source to a field point.

For the piecewise constant interpolation of tractions the convoluted fundamental
solution U2". required in eqn (3). has the form [sce Dominguez (1993)]:

[T S S S s 1+ 1=y
Ur;/\l' — J L:'”.d'[ = 2 . [O‘”(ln +_\ ; (’0 _|n . +_\__ K-)

o YT dmpe; @ X

5

e J1-¢
+<—1>*<o‘,2R_,R,>(” £y X)} (10)
S X«

where p is the mass density: ¢, is the Kronecker delta and the index preceded by a comma
denotes the derivative with respect to the coordinate,

For the piecewise linear interpolation of displacements the convoluted fundamental
solution 7" has the form [see Israil and Banerjee (1990)]:

f;f;'n = j Tz/fwl d‘[ + ' Tz,‘{l dt
‘1',v ! v e

e PAfOsed” e s
x=1 27'[[)(’5 (HAT 3 (0;‘ B X; (/J}

I —o; M=y J1=y?
Y R P b SRRV Sl 28 | TN
@, X [//1

where y is the shear modulus. The coefficients A, and B, are given in Appendix A. For the
linear interpolation functions the contribution of the integration over the time interval
before and after the time node is taken into account.

For the piecewise constant interpolation of tractions the convoluted fundamental

solution U7, required in eqn (4). has the form:
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The coeflicients €, and D are given in Appendix A.
For the piecewise linear interpolation of displacements the convoluted fundamental

solution T3 has the form [see Israil and Banerjee (1991)] :

T,M'di+ |

J Jr

St L T PO IV R PN b \/'ﬁl/ff}
-y e | -2 -
X:Zl 27'[[)('; R('zAT Py )& wx

AN
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T.,M*dt

24312 2 2 2\3 2
Jf(;[(l_%)—z(lvf’)‘ Jr(l—ll/:) }
¢, % W,

+ E,['-- filii -2 - ',,:')S'X,_, + —L}} (13)

NERH N S NG B

The coeflicients £,. F, and G are given in Appendix A.

In evaluating the above variables ¢,, y, and y, the causality condition must be satisfied.
That is, if R is greater than the distance travelled by the wave at the given time then the
value of the variables ¢,, y, and V¥, is greater than 1. In this case the terms in eqns (10)—
(13) which contain that variable are put equal to zero.

Further expressions for the convoluted fundamental solutions U}" and U.} and the
linear interpolation of tractions can be found in Israil and Banerjee (1990, 1991), respec-
tively.

3.3. Evaluation of the space integrals

The fundamental solutions of elastodynamics are singular when R — 0 and the retarded
time (t—1) — 0. The convoluted fundamental solutions, defined in the previous section, are
singular during the first time step.

The kernels U}}” and T)" in the displacement equation have singularities O[In (R)] and
O(1/R). respectively. Integration of these types of singularities is well documented in the
literature. For instance. in Dominguez (1993) U." is integrated using the logarithmic
Gaussian quadrature and 7" by using the singularity subtraction method.

In_the convoluted fundamental solution U} the term containing the expression

]__’R\/l — ¢ has asingularity O(1/R). The term with /1 — @3/ Re3 ., if considered separately,
has a singularity O(1°R"). However, if the two terms corresponding to longitudinal and
shear waves are added together, the singularity is reduced to O(1/R).

_In the convoluted fundamental solution 77 the term containing the expression
v | — @5 Rp, has a singularity O(1'R*). The term with (1—¢;)"?/Re;, if considered
separately. has singularity O(1’'R*). However, if the two terms corresponding to the two
waves are added together, the singularity is reduced to O(1/R’). The term containing the
expression ¢,/R, 1—¢; is not singular.

From the above analysis it can be seen that the convoluted fundamental solutions
have the same order of spatial singularity as the corresponding fundamental solutions of
elastostatics. Both stress kernels contain the expressions 1/\/] — 2, which are weakly
singular at the front of the wave, i.e. when ¢, — 1. The kernels U and T} can be
integrated numerically using standard Gaussian quadrature. if the collocation point does
not belong to the element.
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For integration along an element which contains the collocation point, the integrals
can be calculated using the singularity subtraction method, in a similar way to that dem-
onstrated in elastostatics [see Portela er a/. (1992)]. The regular part of the integrand is
expressed by a Taylor expansion, of which the first few terms are subtracted from the
regular part and then added back. The number of terms required in Taylor’s expansion
depends on the order of the singularity. The regularized part can be integrated using the
standard Gaussian quadrature, while the added terms, which have a simpler form than the
initial integral, can be evaluated analytically.

The first-order finite part integral can be transformed as follows:

1 T £y
]f e N @I de = + g J Al )
-1 1

B V(S )f €
P kif\& 716_€/§

1C_§

E

(14)

»

where }stands for a Cauchy principal value integral and f, (<) is the integrand of the left

hand side multiplied by (¢ — ). The first integral on the right hand side is regular and can
be integrated using standard Gaussian quadrature, while the second can be evaluated
analytically as

bdé 1-&
— =l (15)
][4 <— 1+§
Similarly, the second-order finite part integral can be expressed as follows:
i 1 =
jﬁ TH(E NP (I (E) de = jL ?"”(f,),dé:
-1 Jo(E=¢)
! j 5 Yk ': { ¢’ -
J i ($) — G (w f/k,/(k )& —i-d\ i) % _ﬂ-__ +g25/)(& )jf: -~ (16)
—1 (E—=&) (E—=¢ ¢

wherejcstands for a Hadamard principal value integral, g,,(&) is the integrand of the left

hand side multiplied by (¢ —<') and g’ (£") denotes the first derivative of g,,. The first
integral of the right hand side is regular, the third integral is the same as eqn (15) above,
and the second term can be evaluated as

:F‘](;dc“ S -

The application of the singularity subtraction method for one particular term is dem-
onstrated in Appendix B.

The existence of the finite part integrals in eqns (14) and (16) requires Holder continuity
of fi; and the first derivative of g, at the collocation point, respectively. Both requirements
are satisfied for collocation points at internal nodes of discontinuous elements.

The coeflicients ¢, in eqn (3) are calculated analytically [see Dominguez (1993)]. The
present method requires numerical or analytical integration along one of the crack surfaces.
The integrals for the opposite face can be obtained from the former, since the boundaries
of the crack are coincident.
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Fig. 2. Modelling of the crack using quarter-point elements.

3.4. Matrix equation of motion
After the discretization and integration the following matrix equation is obtained :

N1
HY u" = G*Vt" + Z (GY't" - H""w"), (18)
n=1
where u". t" contain nodal values of displacements and tractions at the time step #n; HY" and
G"" depend on the fundamental solutions and interpolating functions. The superscripts Nn
emphasize that the matrix depends on the difference between the time steps N and n. The
columns of matrices H**, G*" are reordered according to the boundary conditions, giving
new matrices A* and B*¥. The matrix A™" is multiplied by the vector x* of unknown
displacements and tractions and the matrix B*" by the vector y* of known boundary
conditions, as follows:

Vo
A'\‘\X'\ _ BA\‘\ y.\'_}_ Z‘ (G.\mtn ‘anll”). (19)
i

"=

In each time step only the matrices which correspond to the maximum difference N —rn are
computed. The rest of the matrices are known from the previous steps. The matrices AYY
and B*" are calculated in the first step only since they are the same at each time step;
A" = A and B = B. The matrix equation (19) can be written in a simpler form as

AxY = 1Y, 20)

where
N ) )
f.\ — B}\ + Z (G’\nt/:_H/\nun) (21)
n=1

is a known vector. The matrix equation is solved step-by-step giving the unknown dis-
placements and tractions at each time step. During the initial steps the fundamental solu-
tions are non-zero only in the neighbourhood of the collocation point ; they are therefore
integrated only over that part of the boundary. The solution process becomes slower at
later times because the vector f¥ depends on all the matrices from the previous steps.

4. DYNAMIC STRESS INTENSITY FACTORS

The dynamic stress intensity factors (DSIFs) are determined using two methods: the
crack opening displacements (CODs) and the path independent J-integral.

4.1. Crack opening displacements

In order to improve the accuracy of displacements, the positions of nodes of the
straight discontinuous elements adjacent to the crack tip have been changed, as shown in
Fig. 2. The new distances of the pairs of nodes B-C, D-E and F-G from the crack tip A
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are 312/’ %l and 16/ respectively, where / is the length of the element. The local coordinates
of the nodes are the same as other discontinuous elements. ie. ("= —3,0, %). For the
distorted elements the local coordinate ¢ is the square-root function of the distance r from

the crack tip:

Ir
= l~2\/3~ forthe crack tipat & = 1, 22)
V o o
= —1+42_/ , forthecracktipat = —1. (23)

v/

After the above modification. the displacements of the crack tip elements are approximated
by a function

H=d +dz, I+dr. (24)

where «,. a,. a; are coeflicients of the approximation, which depend on the displacements
of nodes of the element. This type of function better represents the displacements field near
the crack tip. The above modification is similar to that used for quadratic continuous
quarter-point elements (QPEs) [see e.g. Blandford er «/. (1981) ; Martinez and Dominguez
(1984)].

The DSIFs are calculated by minimizing the sum of squared differences between the
analytical and numerical values of crack opening displacements for two pairs of nodes B—
C and D--E. The analytical expression A for the crack opening is

j
BN B

AA: . ) .
I 2u \}n\]

(25)

where K is the DSIF: x = 3—4v for plane strain and x = (3—v)/(1+v) for plane stress;
and v is Poisson’s ratio.
The sum of squared differences is

& = (AvBC — AuP) + (ArPF — AuPF)’. (26)

where Au denotes the numerical value of the crack opening and the superscripts the pairs
of nodes.

The parameter ¢ can be expressed in terms of the DSIF from eqn (25). The squared
difference between the numerical and analytical opening displacements, defined by &, is a
minimum if the DSIFs for mode I and mode II have the following values:

) 6u In
- by

= S 1Y j/(Azlﬁj('—h?Azl’:}"'). X))

o | ,
= i_l'i N '?J(A“/‘ﬂ 38w, (28)

K
where Au; and Au, are the crack opening displacements along and perpendicular to the
crack, respectively.

4.2. Path independent I-integral
The dynamic stress intensity factors can be determined from a path independent J-
integral [see e.g. Kishimoto er /. (1980) : Atluri (1986)]. For a mixed mode case the fields
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Fig. 3. Integration path for the J-integral and its discretization.

of derivatives of displacements, strains, stresses, tractions and accelerations are decomposed
into the symmetric mode I and the antisymmetric mode II and the J-integral is calculated
for the two modes of deformation as

»

.
jffzj (Whn, —tbul ) dS+ J piful, d4, B =111, (29)
S+, y

A

where S is an arbitrary curve surrounding the crack tip; S, are the crack surfaces; A the
area enclosed by S and S,; W the strain energy density; n;, the component of the unit
outward normal to the boundary of 4 ; and f is the mode of deformation. The variables in
eqn (29) are expressed in the local crack reference system, shown in Fig. 3. The DSIFs are
calculated from the J*-integrals, as follows:

/'8, \/8
_ 8 s _ [ O gu 30
K, \/K+]J and K, K+1J . (30)

The path independent integrals are calculated for a regular polygonal path with the centre
at the crack tip. The first and last points of the path are the nodes on the crack faces. The
domain enclosed by the path is divided into triangles. All the variables required for the J-
integral are obtained by using the appropriate boundary element equations. The accel-
erations are calculated by using the displacements at different time steps and the central
difference method

, 1 , .
@ = =2 ), G31)

The accuracy of the above approximation depends on the variation of accelerations. A
better approximation can be obtained by calculating the acceleration directly from the
boundary element equation, as has been shown in Fedelinski ez al. (1994a).

The boundary term in eqn (29) is computed using the trapezoidal rule and the domain
term by using Gaussian integration.

5. NUMERICAL EXAMPLES

The present method is applied to four problems. The solutions of the first and the
second problems, i.e. a pure opening mode and a mixed mode case, are obtained by using
the COD and the J-integral and compared with other reported solutions. The third example
demonstrates an application for an infinite sheet and the fourth example a new application
for a multiple crack problem. In each example the structure is instantaneously loaded by a
uniform stress o, at time t = 0. The DSIFs are normalized with respect to
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Fig. 4. Rectangular plate with a central crack.

Ky = 04y 7a. (32)

where a defines the length of the crack. The static limits are calculated using the present
program and assuming a small density of the material.

5.1. Rectangular plate with a central crack

A rectangular plate of length 25 = 40 mm and width 24 = 20 mm contains a central
crack of length 2a = 4.8 mm. as shown in Fig. 4. The material properties are: the shear
modulus z = 76.92 x 10° Pa ; Poisson’s ratio v = 0.3 ; the density p = 5000 kg m~* and the
plate is under a state of plane strain. The opposite ends of the plate are loaded by the stress
o, with Heaviside-function time dependence. The boundary is divided into 32 boundary
elements and the time step At = 0.3 us. The use of larger numbers of elements did not alter
the results by a significant amount.

The normalized DSIF K/K, is plotted in Fig. 5 and compared with that of Chen
(1975), who used a finite difference method. and Aberson er al. (1977), who used a finite
element method. In those methods a quarter of the plate was modelled. The DSIFs obtained
here by the COD and the J-integral are similar and in general both agree well with those
results. Certain details are different, for instance the peak at r = 4us, shown by the finite
element method and the DBEM and J-integral, confirmed by Lin and Ballman (1993), is
not detected by the remaining methods. The use of the quarter-point element improves the
DSIF results obtained from the COD, but has a negligible effect on those obtained from
the J-integral.

seeeo DBEM (J—integral)
swerss DBEM (COD)
esese Chen

xxxxx Aberson et al.
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Fig. 5. Normalized dynamic stress intensity factor K, K, for the rectangular plate with a central
crack.
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Fig. 6. Rectangular plate with an internal inclined crack.

5.2. Rectangular plate with an internal inclined crack

A rectangular plate of length 26 = 60 mm and width 24 = 30 mm contains a central
inclined crack of length 2¢ = 14.14 mm slanted at an angle o = 457, as shown in Fig. 6.
The material properties are the same as in the previous example. The opposite ends of the
plate are loaded by the stress g,. The boundary is divided into 40 boundary elements and
the time step At = 0.8 us.

The normalized DSIFs K; K, and K;;;K, are plotted in Figs 7 and 8, respectively,
and compared with those of Dominguez and Gallego (1992), who used the time domain
formulation and a subregion technique in the BEM. and Murti and Valliappan (1986), who
used a finite element method. The DSIFs obtained here by the COD and the J-integral are
similar. The current resuits differ slightly from the reported solutions, but they agree with
the results obtained using the dual reciprocity method and the DBEM {[see Fedelinski ef al.
(1994a)]. The same example was solved in Fedelinski er al. (1994c¢) using the linear temporal
shape function for tractions in the traction equation, and similar solutions were obtained
as those presented in Figs 7 and 8.

5.3. Two cracks at a hole in an infinite sheet

Figure 9 shows two equal-length cracks, diametrically opposite at the edge of a circular
hole of diameter d = 20 mm. The distance between the crack tips is 2a = 60 mm. The
material properties are: the Young's modulus £ = 0.2 x 10'? Pa; Poisson’s ratio v = 0.3;
the density p = 8000 kg m *: and the plate is under a state of planc strain. The hole is
loaded by a uniform normal pressure ¢,. The crack and hole boundaries are divided into a
total of 44 boundary elements and the time step At = | pus.
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Fig. 7. Normalized dynamic stress intensity factors K- K, for the rectangular plate with an internal
inclined crack.
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Fig. 8. Normalized dynamic stress intensity factors Ky, K, for the rectangular plate with an internal
inclined crack.

The normalized SIFs K, K, are shown in Fig. 10. It can be seen that the DSIF tends
to a static limit at long times.

5.4. Rectangular plate with cracks atr holes

A rectangular plate of length 2 = 120 mm and width 24 = 60 mm contains three holes
in a row of diameter ¢ = 10 mm, each with two cracks. as shown in Fig. 11. The distance
between the centres of holes is w = 30 mm. The outer holes have a pair of diametrically
opposite cracks along the line of centres: the crack length ¢, measured from the centre of
the hole, i1s ¢ = 10 mm. The middle hole has two cracks. one of length @ and the other of
length 1.5¢. The material properties are the same as in the previous example. The opposite
ends of the plate are loaded by the stress a,. The boundary is divided into 100 boundary
elements and the time step At = 1 us.

The normalized SIFs for the crack tips are plotted in Fig. 12. The largest values of
both the static and the dynamic SIFs were obtained for cracks D, E and C, in that order.
The static values for £ and C are almost identical.

6. CONCLUSIONS

A single-region time domain boundary element method has been developed for the
analysis of cracked two-dimensional structures subjected to dynamic loads. The method
requires discretization of the external boundary of the body and both crack surfaces. No
other discretization is required. In the subregion technique the structure is divided into

Fig. 9. Two cracks at a hole in an infinite sheet.
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Fig. 10. Normalized dynamic stress intensity tactor A, K, for two cracks at a hole in an infinite
sheet.
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Fig. 11. Rectangular plate with cracks at holes.

subregions along continuations of crack surfaces. The artificial internal boundaries require
additional elements and are inconvenient in modelling crack growth. In the displacement
discontinuity method only one of the crack surfaces is discretized and the boundary integral
equations are expressed in terms of the relative displacements of crack surfaces. This method
needs fewer boundary elements than the present approach; however, only the relative
displacements are obtained directly from the solution. The DBEM was initially combined
with the dual reciprocity method. That method is less accurate than the present method
since additional approximation of accelerations at internal points is used. The present
method. however. is more time consuming and requires more computer memory, since in
each time step two system matrices are computed and stored. The dynamic stress intensity
factors were calculated from the crack opening displacements and the path independent J-
integral. The solutions obtained by using these two methods are similar and agree well with
other reported solutions. However, the computation of the f—integral is time consuming,
since the method requires space and time integration at each time step to determine internal

values.
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APPENDIX A

The coefficients of the convoluted fundamental solution 7" in eqn (11) are [see Israil and Banerjee (1990)]:

oR
A, = —(— l)z[niR.J+n,R|,+ ‘ol—n(a,.,.—mjkv,)], (A1)
; oR
B = “mR,+2°“RR, (A2)
u on
°R
B, =5-(6,~2R.R)+nR,, (A3)

where n, is the component of the outward normal at the boundary and 4 is the Lame constant.
The coefficients of the convoluted fundamental solution U} in eqn (12) are [see Israil and Banerjee (1991)]:

C = ;bR +2R,R,R,. (A4)
C, = ZR.,R.,R_k—R‘,é,k—R_lé,k, (AS)
D = R, +R 8, +R,3,—4R,R,R,. (A6)

The coefficients of the convoluted fundamental solution 747 in eqn (13) are [see Israil and Banerjee (1991)] :

A / dR
E, = <;(),/+2R‘,R‘/)<;n,\ +25’;R.k>s (A7)
oR . .
E, = B—n (4R,R R, — Ridy—R,;04)—nR,;R;— ",RJR,/(’ (A8)

P ; oR
Fi = —n, [ﬁ 3, <2 + i) + 2R_,R_,] ~2mR Ry~ 2n,RRs =25 (R3u+ R,0x+Rydy—6R.R,RS),  (A9)

. . °R .
Fy =n{0; —2R ;R;)+n(dyx —2R,R;) —2m R, R;—2 %,; (R4 + R 04+ Ryd;—6R,R ;R,), (A10)
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. . R éR .
G =n(—0p+4R R} +n(—d,+4R,R))+n(—d,+4R,R )+4 - (ROu+R 84+ Ri0,—6R,R R,).

APPENDIX B

The application of the singularity subtraction method is demonstrated here for just one particular term of

the convoluted fundamental solution Ty, in eqn (13) ; this term can be written as:

-l (0)

1 (_l)aul 1 N
I = . )(E+F. )
‘ jc rmpe: RGBT

NI (&) de, (B1)

which has singularity O(1/R?). The coefficients £, and F, are independent of ¢ for a straight element. The above
expression can be written as /, = CI,, where C is a constant and /, contains all the spatial dependence and is of
the form

VAR
IﬁjE EOL v ae, (B2)

=1 R*(&)
where

1

=— B3
a CAT(N—n+1) (B3)

The spatial quadratic shape function N?(£) can be written in a general form as
NP(E) = bE +cE+d, (B4)

where b, ¢ and d are constants.
Consider the integration of /, along the quarter-point element, when the crack tip has the coordinate { = —1.
For this element the Jacobian is

JME) = HE+ 1), (BS)
and the distance R(&) between the source point ¢’ and the field point ¢ is
R(E) = JHE-ENE+E +2). (B6)

Substituting eqns (B4), (BS5) and (B6) into eqn (B2) we obtain

1,

=@ IE-0E+ e+l 1 )
= j[ (bE +cE+d)I(E+ 1) dé. (B7)

BUE—&)E+¢+ )

Therefore, function g;,(¢) in eqn (16) is

VU= lglE=EE+E+ )1 (

] - bE + L +dilE+1), (B8)
GIE+E+D)

Gy (E) =

and the terms required for the Taylor expansion in eqn (16) are

2687+ +d)

G (E )= E+n (B9)
2026& +¢)
(Y Fry = 277 %
g (&) = eI (B10)

The other terms of the convoluted fundamental solutions can be treated in a similar way.



